Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
iScience ; 27(4): 109449, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38551002

RESUMEN

MicroRNAs (miRNAs) interact with mRNAs in various pathophysiological processes. In developmental dysplasia of the hip (DDH), the miRNA-mRNA pairs affecting acetabular cartilage (AC) development remain unknown. We investigated dynamic microstructure changes and mRNA and miRNA expression profiles in the AC proliferative zone in a DDH rat model. Abnormal chondrocyte proliferation was observed, and several differentially expressed mRNAs and miRNAs were identified. Downregulated mRNAs and target genes of upregulated miRNAs were primarily enriched in bone and cartilage development. Six hub genes were identified using the predicted miRNA-mRNA interaction network and gene expression pattern analysis. The expression levels of these hub genes and paired miRNAs aligned with our predictions, and most of the pairs were significantly negatively correlated. Excessive chondrocyte proliferation in the AC proliferative zone can delay AC ossification, which might be crucial to DDH development. Specific miRNA-mRNA interaction pairs may serve as diagnostic biomarkers and therapeutic targets.

2.
Nanoscale ; 16(15): 7323-7340, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38511283

RESUMEN

Harnessing electrical or solar energy for the renewable production of value-added fuels and chemicals through catalytic processes (such as photocatalysis and electrocatalysis) is promising to achieve the goal of carbon neutrality. Owing to the large number of highly accessible active sites, highly porous structure, and charge separation/transfer ability, as well as excellent stability against chemical and electrochemical corrosion, zeolite imidazolate framework (ZIF)-based catalysts have attracted significant attention. Strategic construction of heterojunctions, and alteration of the metal node and the organic ligand of the ZIFs effectively regulate the binding energy of intermediates and the reaction energy barriers that allow tunable catalytic activity and selectivity of a product during reaction. Focusing on the currently existing critical issues of insufficient kinetics for electron transport and selective generation of ideal products, this review starts from the characteristics and physiochemical advantages of ZIFs in catalytic applications, then introduces promising regulatory approaches for advancing the kinetic process in emerging CO2 reduction, water splitting and N2 reduction applications, before proposing perspective modification directions.

3.
Front Immunol ; 14: 1241047, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37529041

RESUMEN

[This corrects the article DOI: 10.3389/fimmu.2022.1056750.].

4.
Am J Respir Cell Mol Biol ; 69(5): 508-520, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37478333

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleocapsid protein (N-protein) increases early in body fluids during infection and has recently been identified as a direct inducer for lung injury. However, the signal mechanism of N-protein in the lung inflammatory response remains poorly understood. The goal of this study was to determine whether RAGE (receptor for advanced glycation endproducts) participated in N-protein-induced acute lung injury. The binding between N-protein and RAGE was examined via assays for protein-protein interaction. To determine the signaling mechanism in vitro, cells were treated with recombinant N-protein and assayed for the activation of the RAGE/MAPK (mitogen-activated protein kinase)/NF-ĸB pathway. RAGE deficiency mice and antagonist were used to study N-protein-induced acute lung injury in vivo. Binding between N-protein and RAGE was confirmed via flow cytometry-based binding assay, surface plasmon resonance, and ELISA. Pull-down and coimmunoprecipitation assays revealed that N-protein bound RAGE via both N-terminal and C-terminal domains. In vitro, N-protein activated the RAGE-ERK1/2-NF-ĸB signaling pathway and induced a proinflammatory response. RAGE deficiency subdued N-protein-induced proinflammatory signaling and response. In vivo, RAGE was upregulated in the BAL and lung tissue after recombinant N-protein insult. RAGE deficiency and small molecule antagonist partially protected mice from N-protein-induced acute lung injury. Our study demonstrated that RAGE is a receptor for N-protein. RAGE is partially responsible for N-protein-induced acute lung injury and has the potential to become a therapeutic target for treating coronavirus disease.


Asunto(s)
Lesión Pulmonar Aguda , COVID-19 , Animales , Ratones , Lesión Pulmonar Aguda/metabolismo , FN-kappa B/metabolismo , Receptor para Productos Finales de Glicación Avanzada/metabolismo , SARS-CoV-2/metabolismo
5.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 52(1): 110-116, 2023 Feb 25.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-37283124

RESUMEN

OBJECTIVES: To investigate the risk factors of postoperative neuro-developmental abnormalities in neonates with critical congenital heart disease (CCHD). METHODS: Clinical data of 50 neonates with CCHD admitted in the Cardiac Intensive Care Unit, The Children's Hospital, Zhejiang University School of Medicine from November 2020 to December 2021 were retrospectively analyzed. Neurological assessment was performed with cranial ultrasonography, CT/MRI, video electroencephalogram and clinical symptoms before and after surgical treatment for all patients, and neurodevelopmental abnormalities were documented. Binary logistic stepwise regression was used to analyze risk factors of postoperative new-onset neurodysplasia in children with CCHD, and the predictive value of the risk factors on postoperative neurodevelopmental abnormalities were evaluated using the receiver operating characteristic (ROC) curve. RESULTS: Neurodevelopmental abnormalities were detected in 22 cases (44.0%) and not detected in 28 cases (56.0%) before surgery. There were no significant differences in gender, birth weight, age at admission, gestational age, preoperative SpO2 level, prematurity, cyanotic congenital heart disease, and ventilator support between the two groups (all P>0.05). After surgery, there were 22 cases (44.0%) with new-onset neurological abnormalities and 28 cases (56.0%) without new-onset abnormalities. Multivariate logistic regression analysis showed that postoperative 24 h peak lactic acid (OR=1.537, 95%CI: 1.170-2.018, P<0.01) and postoperative length of ICU stay (OR=1.172, 95%CI:1.031-1.333, P<0.05) were independent risk factors for postoperative new-onset neurodevelopmental abnormalities. The area under ROC curve (AUC) of the postoperative 24 h peak lactic acid for predicting the new-onset neurological abnormalities after operation was 0.829, with cut-off value of 4.95 mmol/L. The diagnostic sensitivity and specificity were 90.0% and 64.3%, respectively. The AUC of postoperative length of ICU stay for predicting the new-onset neurological abnormalities after operation was 0.712, with cut-off value of 18.0 d. The diagnostic sensitivity and specificity were 50.0% and 96.4%, respectively. The AUC of the combination of the two indicators was 0.917, the diagnostic sensitivity and specificity were 95.5% and 64.3%, respectively. CONCLUSIONS: The incidence of neurodysplasia in neonatal CCHD is high, and new neurological abnormalities may occur after surgery. The postoperative 24 h peak lactic acid and postoperative length of ICU stay are risk factors for new-onset neurodysplasia after surgery. The combination of the two indicators has good predictive value for neurodevelopmental outcomes after surgery in CCHD infants.


Asunto(s)
Cardiopatías Congénitas , Recién Nacido , Lactante , Niño , Humanos , Pronóstico , Estudios Retrospectivos , Curva ROC , Cardiopatías Congénitas/cirugía , Factores de Riesgo , Ácido Láctico
6.
Chemosphere ; 316: 137813, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36642138

RESUMEN

Photocatalysis provides a sustainable way for NOx elimination. However, efficient and safe photocatalytic removal of NOx remain a great challenge due to the limited light-harvesting ability and quick recombination of charge carriers. Herein, holey sulfur-doped g-C3N4 nanosheets (CNN-S) was reported by directly calcining a mixture of hydrolyzed dicyandiamide and thioacetamide. The specific surface area of the pristine g-C3N4 nanosheets (CNN-S0) is 3-4 times higher than bulk g-C3N4 (BCN), and the photocatalytic NO removal rate also increased from 17% (BCN) to 35% (CNN-S0). The effect of sulfur content on the photocatalytic performance was systematic studied, and CNN-S0.5 sample exhibits the highest NO removal rate (53%). The high photoreactivity of S-doped g-C3N4 nanosheets can be attributed to enhanced visible light absorption, increased specific surface area, and effective separation and transfer of photo-generated charges owing to the synergistic effect of the nanosheet structure and sulfur doping. In addition, density functional theory calculations show that the doping of S is also beneficial to the adsorption and activation of the reactants on CN.


Asunto(s)
Luz , Azufre , Adsorción , Tioacetamida
7.
J Hazard Mater ; 442: 130040, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36182883

RESUMEN

Photo-oxidation with semiconductor photocatalysts provides a sustainable and green solution for NOx elimination. Nevertheless, the utilization of traditional photocatalysts in efficient and safe photocatalytic NOx removal is still a challenge due to the slow charge kinetic process and insufficient optical absorption. In this paper, we report a novel porous g-C3N4 nanosheet photocatalyst modified with cyano defects and CaCO3 (xCa-CN). The best performing sample (0.5Ca-CN) exhibits an enhanced photo-oxidation NO removal rate (51.18 %) under visible light irradiation, largely surpassing the value of pristine g-C3N4 nanosheets (34.05 %). Such an enhancement is mainly derived from an extended visible-light response, improved electron excitation and transfer, which are associated with the synergy of cyano defects and CaCO3, as evidenced by a series of spectroscopic analyses. More importantly, in-situ DRIFTS and density functional theory (DFT) results suggest that the introduction of cyano defects and CaCO3 enables control over NO adsorption and activation processes, making it possible to implement a preference pathway (NO → NO+ → NO3¯) and reduce the emission of toxic intermediate NO2. This work demonstrates the potential of integrating defect engineering and insulator modification to design highly efficient g-C3N4-based photocatalysts for air purification.

8.
Front Immunol ; 13: 1056750, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36439140

RESUMEN

Background: Early diagnosis of septic shock in children is critical for prognosis. This study committed to investigate the signature genes and their connection with immune cells in pediatric septic shock. Methods: We screened a dataset of children with septic shock from the GEO database and analyzed differentially expressed genes (DEGs). Functional enrichment analysis was performed for these DEGs. Weighted gene co-expression network analysis (WCGNA) was used to screen the key modules. Least absolute shrinkage and selection operator (LASSO) and random forest analysis were finally applied to identify the signature genes. Then gene set enrichment analysis (GSEA) was exerted to explore the signaling pathways related to the hub genes. And the immune cells infiltration was subsequently classified via using CIBERSORT. Results: A total of 534 DEGs were screened from GSE26440. The data then was clustered into 17 modules via WGCNA, which MEgrey module was significantly related to pediatric septic shock (cor=-0.62, p<0.0001). LASSO and random forest algorithms were applied to select the signature genes, containing UPP1, S100A9, KIF1B, S100A12, SLC26A8. The receiver operating characteristic curve (ROC) of these signature genes was 0.965, 0.977, 0.984, 0.991 and 0.989, respectively, which were verified in the external dataset from GSE13904. GSEA analysis showed these signature genes involve in positively correlated fructose and mannose metabolism and starch and sucrose metabolism signaling pathway. CIBERSORT suggested these signature genes may participate in immune cells infiltration. Conclusion: UPP1, S100A9, KIF1B, S100A12, SLC26A8 emerge remarkable diagnostic performance in pediatric septic shock and involved in immune cells infiltration.


Asunto(s)
Choque Séptico , Humanos , Niño , Choque Séptico/genética , Perfilación de la Expresión Génica , Proteína S100A12/genética , Pronóstico , Curva ROC
9.
J Mech Behav Biomed Mater ; 136: 105478, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36209590

RESUMEN

Some atrial contractile assist devices applied on the heart surface can be regarded as a laminated Liquid crystal elastomer (LCE) plate under steady temperature loads and a contact mechanical force. An exact solution for the deformation of the laminated LCE plate under combined thermal and mechanical loads is derived by solving the three-dimensional (3D) equilibrium equations including heat conduction and thermoelastic theory. The validity of mathematical formula and computer programming is proved by convergence and comparison examples with finite element method (FEM). In order to simplify the complex calculation of exact solution, a back propagation neural network (BPNN) is further trained with a database containing 9504 sets of thermo-mechanical load conditions and their corresponding deformation which is solved by the exact solutions. Then the deformations of LCE plate subject to combined thermo-mechanical load can be predicted by this BP neural network instead of complex numerical calculation. Moreover, it is also applied to inverse the contact mechanical force at the bottom surface of LCE plate with a given deformation and temperature conditions. The results show that: (1) The results from the exact theoretical solution are in consistence with that from FEM but have a higher computational efficiency and stability; (2) The deformation of the laminated plate is more sensitive to the layered thickness of LCE than the variation of the temperature; (3) 3-D elasticity solutions of a laminated LCE plate under the combined thermos-mechanical load can be effectively predicted by a trained BP neural network.


Asunto(s)
Elastómeros , Cristales Líquidos , Elasticidad , Placas Óseas , Redes Neurales de la Computación
10.
Angew Chem Int Ed Engl ; 61(40): e202208414, 2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-35920387

RESUMEN

Herein, using as-designed surface-mounted Bismuth-based metal-organic framework (Bi-MOF) on two-dimensional BiOBr support, as an operable platform for site-specific strain engineering to tailor the intermediate adsorption/desorption capability in CO2 photocatalytic conversion is proposed. Giant compressive strain up to 7.85 % is successfully induced on the surface-mounted Bi-MOF revealed by HRTEM images and geometric phase analysis as well as in situ Raman characterization, which largely downshifts the p band center of Bi nodes and intensifies their unsaturated state. In-depth explorations are put onto p-p (Bi 6p and CO2 /CO 2p) orbital hybridization. Taking the adsorption process as an example, the 1π and 7σ frontier molecule orbitals of CO2 2p for both the strain-free and strained models shift downwards the Fermi level, indicative of fast adsorption of CO2 . Meanwhile, strain engineering further induces new non-degenerate orbital overlapping near 1π and intensified overlapping of 7σ orbitals, stimulating the fast activation of absorbed CO2 molecules.

11.
Chemosphere ; 303(Pt 2): 135085, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35618060

RESUMEN

Metal sulfides are a type of reduction semiconductor photocatalysts with narrow bandgap and negative conduction band potential, which make them have unique photocatalytic performance in solar-to-fuel conversion and environmental purification. However, metal sulfides also suffer from low quantum efficiency and photocorrosion. In this review, the strategies to improve the photocatalytic activity of metal sulfide photocatalysts by stimulating the charge separation and improving light-harvesting ability are introduced, including morphology control, semiconductor coupling and surface modification. In addition, the recent research progress aiming at improving their photostability is also illustrated, such as, construction of hole transfer heterojunctions and deposition of hole transfer cocatalysts. Based on the electronic band structures, the applications of metal sulfides in photocatalysis, namely, hydrogen production, degradation of organic pollutants and reduction of CO2, are summarized. Finally, the perspectives of the promising future of metal-sulfide based photocatalysts and the challenges remaining to overcome are also presented.


Asunto(s)
Procesos Fotoquímicos , Semiconductores , Catálisis , Sulfuros , Luz Solar
12.
Adv Mater ; 34(27): e2200929, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35476265

RESUMEN

Photoexcited dynamic modulation, maximizing the effective utilization of photoinduced electron-hole pairs, dominates the multiple electrons-involving reduction pathways for terminal CH4 evolution during CO2 photoreduction. Yet, the site-specific regulation of directional charge transfer by modification of an S-scheme heterojunction has seldom been discussed. Herein, an atomic-level tailoring strategy by anchoring single-atomic Co into CeO2 co-catalyst rather than carbon nitride supports, which can selectively favor CO2 -to-CH4 photoreduction, is reported. Through in situ dynamic tracking investigations, this study identifies that surface Co-embedded bimetallic CeCo conjunction is the key feature driving a strong interconnection of dynamical charge states through S-scheme heterojunctions. The Co-embedded modification into CeO2 co-catalysts is demonstrated to have a critical effect on directional charge control, accelerating the driving of electrons from the carbon nitride donations to site-specific Co hubs, which thereby promotes electronic transferability for electrons-involving CH4 formation. As a result, an unprecedented CH4 yield (181.7 µmol g-1 ) is obtained with a high turnover number (411.4) through a fully gas-solid reaction, demonstrating its potential toward targeted CH4 formation without adding any sacrificial agent.

13.
Front Mol Biosci ; 9: 814240, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35187084

RESUMEN

Background: microRNAs (miRNAs) from circulating extracellular vesicles (EVs) have been reported as disease biomarkers. This study aimed to identify the diagnostic value of plasma EV-miRNAs in sepsis. Methods: EVs were separated from the plasma of sepsis patients at admission and healthy controls. The expression of EV-miRNAs was evaluated by microarray and qRT-PCR. Results: A preliminary miRNA microarray of plasma EVs from a discovery cohort of 3 sepsis patients at admission and three healthy controls identified 11 miRNAs with over 2-fold upregulation in sepsis group. Based on this finding, EV samples from a validation cohort of 37 sepsis patients at admission and 25 healthy controls were evaluated for the expression of the 6 miRNAs relating injury and inflammation via qRT-PCR. Elevated expression of miR-483-3p and let-7d-3p was validated in sepsis patients and corroborated in a mouse model of sepsis. miR-483-3p and let-7d-3p levels positively correlated with the disease severity. Additionally, a combination of miR-483-3p and let-7d-3p had diagnostic value for sepsis. Furthermore, bioinformatic analysis and experimental validation showed that miR-483-3p and let-7d-3p target pathways regulating immune response and endothelial function. Conclusion: The present study reveals the potential role of plasma EV-miRNAs in the pathogenesis of sepsis and the utility of combining miR-483-3p and let-7d-3p as biomarkers for early sepsis diagnosis.

14.
J Phys Condens Matter ; 34(17)2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-35030543

RESUMEN

Understanding the atomic diffusion features in metallic material is significant to explain the diffusion-controlled physical processes. In this paper, using electromigration experiments and molecular dynamic (MD) simulations, we investigate the effects of grain size and temperature on the self-diffusion of polycrystalline aluminium (Al). The mass transport due to electromigration are accelerated by increasing temperature and decreasing grain size. Magnitudes of effective diffusivity (Deff) and grain boundary diffusivity (DGBs) are experimentally determined, in which theDeffchanges as a function of grain size and temperature, butDGBsis independent of the grain size, only affected by the temperature. Moreover, MD simulations of atomic diffusion in polycrystalline Al demonstrate those observations from experiments. Based on MD results, the Arrhenius equation ofDGBsand empirical formula of the thickness of grain boundaries at various temperatures are obtained. In total,DeffandDGBsobtained in the present study agree with literature results, and a comprehensive result of diffusivities related to the grain size is presented.

15.
J Colloid Interface Sci ; 608(Pt 2): 1268-1277, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34739990

RESUMEN

The molten salt-assisted route is one of the most important methods to improve the crystallinity of conventionally disordered bulk graphitic carbon nitride (g-C3N4). However, the residual potassium ions from potassium chloride/lithium chloride molten salt can greatly impact the ordered structure of g-C3N4 and serve as the recombination centers of photoinduced carriers, causing limited photocatalytic hydrogen-evolution performance. In this article, the ethyl acetate-mediated method is first developed to not only further improve the ordered structure of traditional crystalline g-C3N4, but also produce more cyano groups for preparing highly efficient g-C3N4 photocatalysts. Herein, the ethyl acetate can gradually hydrolyze to produce hydrogen ions, which can promote the more ordered sheet-like structure and more cyano groups by effective removal of residual potassium ions in the traditional crystalline g-C3N4, leading to the formation of cyano group-enriched crystalline g-C3N4 photocatalysts (CC-CN). As a result, the resultant CC-CN displays the remarkably enhanced photocatalytic hydrogen-evolution performance (295.30 µmol h-1 with an apparent quantum efficiency about 12.61%), in comparison to the bulk g-C3N4 (14.97 µmol h-1) and traditional crystalline g-C3N4 (24.60 µmol h-1). The great improvement of photocatalytic performance can mainly be ascribed to the synergism of improved ordered structure and abundant cyano groups, namely, the efficient transfer and separation of photoinduced charges as well as excellent interfacial hydrogen-generation reaction, respectively. The present work may deliver new strategies to prepare other high-crystalline photocatalysts with great efficiency.

16.
J Mech Behav Biomed Mater ; 125: 104918, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34740016

RESUMEN

This paper presents a convenient and efficient method to predict the mechanical solutions of a laminated Liquid Crystal Elastomers (LCEs) system subjected to combined thermo-mechanical load, based on a back propagation (BP) neural network which is trained by machine learning from a database established by analytical solutions. Firstly, the general solutions of temperature, displacement, and stress of any single layer in the LCEs system are obtained by solving the two-dimensional (2D) governing equations of both heat conduction and thermoelasticity. Then, the unknown coefficients in above general solutions are determined by a transfer-matrix method based on the continuity condition at the interface of adjacent layers and the combined thermo-mechanical loads condition at the surface of the LCEs system. The formula derivation and calculator program are verified through convergence studies and comparisons with FEM results. Finally, a database with displacements of LCEs system in a temperature field subjected to 561 sets of mechanical loads is established based on the presented analytical model. The BP neural network based on above database is further applied to establish the relationship between deformation and mechanical load to predict the elastic deformation of the LCEs system in a temperature field subjected to a mechanical load. Moreover, the BP network can also inverse the coefficients of mechanical load which induces the specific deformation in a temperature field. The numerical examples show that: (1) The deformation of a laminated LCEs system due to thermal load is limited within the range of human temperature changes from 36 °C to 40 °C. (2) The thickness of the LCE is a sensitive parameter on the deformation at the bottom surface of the system. (3) The accuracy of predicted displacements induced by the thermo-mechanical load and the inversed mechanical load based on deformation of the LCEs system in a temperature field using BP neural network reaches 99.6% and 98.5% respectively.


Asunto(s)
Elastómeros , Cristales Líquidos , Humanos , Redes Neurales de la Computación
17.
J Colloid Interface Sci ; 607(Pt 1): 662-675, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34530187

RESUMEN

In recent years, the use of quantum dots (QDs) cocatalysts to improve the hydrogen evolution activity from the water splitting of photocatalysts has become a popular research topic. Herein, we successfully prepared a novel 0 dimension/2 dimension (0D/2D) heterojunction nanocomposite (denoted Ag2S quantum dots (QDs)/g-C3N4) with excellent photocatalytic performance by anchoring the Ag2S QDs cocatalyst on the surface of g-C3N4 through a self-assembly strategy. Ag2S QDs with an average particle size of approximately 5.8 nm were uniformly and tightly modified on g-C3N4. The Ag2S QDs/g-C3N4 composite with 0.5 wt% Ag2S QDs loading achieved the highest hydrogen evolution rate of 471.1 µmol·g-1·h-1 with an apparent quantum efficiency (AQE) of 1.48% at 405 nm. Such remarkable hydrogen evolution activity far exceeded that of undoped g-C3N4 and Ag2S nanoparticles (NPs)/g-C3N4. Moreover, it was 2.04 times the activity of Pt/g-C3N4 with Pt as the cocatalyst. The enhanced photocatalytic performance was attributed to the energy band broadening of Ag2S QDs caused by the quantum size effect and the convenient and effective charge transfer between g-C3N4 and Ag2S QDs cocatalysts. The mechanism underlying the enhanced photocatalytic H2 evolution activity was further proposed. This study demonstrates that semiconductor-based quantum dots are strong candidates for excellent cocatalysts in photocatalysis.

18.
Small ; 18(11): e2104984, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34894075

RESUMEN

With the demanding detection of unique toxic gas, semiconductor gas sensors have attracted tremendous attention due to their intriguing features, such as, high sensitivity, online detection, portability, ease of use, and low cost. Triethylamine, a typical gas of volatile organic compounds, is an important raw material for industrial development, but it is also a hazard to human health. This review presents a concise compilation of the advances in triethylamine detection based on chemiresistive sensors. Specifically, the testing system and sensing parameters are described in detail. Besides, the sensing mechanism with characterizing tactics is analyzed. The research status based on various chemiresistive sensors is also surveyed. Finally, the conclusion and challenges, as well as some perspectives toward this area, are presented.


Asunto(s)
Etilaminas , Compuestos Orgánicos Volátiles , Humanos , Semiconductores
19.
Front Immunol ; 12: 791753, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34950152

RESUMEN

Background: Infection of SARS-CoV-2 may cause acute respiratory syndrome. It has been reported that SARS-CoV-2 nucleocapsid protein (N-protein) presents early in body fluids during infection. The direct involvement of N-protein in lung injury is poorly understood. Methods: Recombinant N-protein was pretreated with polymyxin B, a lipopolysaccharide (LPS)-neutralizing agent. C57BL/6, C3H/HeJ (resistant to LPS), and C3H/HeN (control for C3H/HeJ) mice were exposed to N-protein via intratracheal administration to examine acute lung injury. In vitro, bone marrow-derived macrophages (BMDMs) were cultured with N-protein to study phosphorylation of nuclear factor kappa B (NF-ĸB) p65, macrophage polarization, and expression of proinflammatory cytokines. Results: N-protein produced acute lung injury in C57BL/6 mice, with elevated protein permeability, total cell count, neutrophil infiltration, and proinflammatory cytokines in the bronchioalveolar lavage. N-protein also induced lung injury in both C3H/HeJ and C3H/HeN mice, indicating that the effect could not be attributed to the LPS contamination. N-protein triggered phosphorylation of NF-ĸB p65 in vitro, which was abolished by both N-protein denaturation and treatment with an antibody for N-protein, demonstrating that the effect is N-protein specific. In addition, N-protein promoted M1 macrophage polarization and the expression of proinflammatory cytokines, which was also blocked by N-protein denaturation and antibody for N-protein. Furthermore, N-protein induced NF-ĸB p65 phosphorylation in the lung, while pyrrolidine dithiocarbamate, an NF-ĸB inhibitor, alleviated the effect of N-protein on acute lung injury. Conclusions: SARS-CoV-2 N-protein itself is toxic and induces acute lung injury in mice. Both N-protein and NF-ĸB pathway may be therapeutic targets for treating multi-organ injuries in Coronavirus disease 2019 (COVID-19).


Asunto(s)
Lesión Pulmonar Aguda/virología , COVID-19 , Proteínas de la Nucleocápside de Coronavirus/toxicidad , FN-kappa B/metabolismo , Lesión Pulmonar Aguda/metabolismo , Animales , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Fosfoproteínas/toxicidad , SARS-CoV-2
20.
Small Methods ; 5(4): e2001042, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34927853

RESUMEN

Broadening the absorption of light to the near-infrared (NIR) region is important in photocatalysis to achieve efficient solar-to-fuel conversion. NIR-responsive photocatalysts that can utilize diffusive solar energy are attractive for alleviating the energy crisis and environmental pollution. Over the past few years, considerable progress on the component and structural design of NIR-responsive photocatalysts have been reported. This study aims to systematically summarize recent progress toward the material design and mechanism optimization of NIR-responsive photocatalysts in this area. Depending on the main strategies for harvesting NIR photons, NIR-responsive photocatalysts can be categorized as direct NIR-light photocatalysts, indirect NIR-light photocatalysts, and photothermal photocatalysts. Furthermore, the construction and application of different NIR-responsive photocatalytic systems are summarized. Conclusions and perspectives are presented to further explore the potential of NIR-responsive photocatalysts in this field.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...